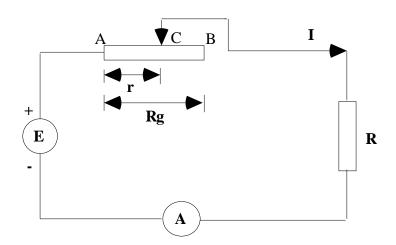
ESAME DELL'AZIONE REGOLATRICE DI UN REOSTATO IN SERIE


Obbiettivi:

Lo scopo di questa esercitazione é quello di esaminare come varia la corrente I al variare della resistenza introducendo un reostato in serie al circuito.

Strumenti:

ALIMENTATORE (12 volt) AMPEROMETRO RESISTENZA DI REGOLAZIONE(10-120 Ω) RESISTORE (25 Ω)

Schema di collegamento:

La Misura:

Si tratta di rilevare la funzione:

$$I / Imax = f(\partial)$$
 dove $\partial = r / Rg$

Applicando la legge di ohm generalizzata E=rI+RI

oppure E=(r+R)I

da cui si ricava I=E/r+R

Posto il cursore C in A e quindi per r=0

segue $\partial = 0/Rg = 0$

quindi I=E/r+R=E/0+Rsegue I=E/R=**Imax**

Posto il cursore C in B e quindi per r=Rg

$$\begin{array}{lll} \text{segue} & \text{r=r/Rg=Rg/Rg=1} \\ \text{quindi} & \text{I=E/r+R=E/Rg+R} \\ \text{segue} & \text{I=E/Rg+R} = \textbf{Imin} \end{array}$$

Eseguendo il rapporto fra la corrente massima e la minima si ricava :

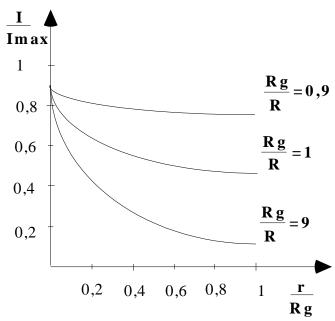
$$\frac{Imax}{Imin} = \frac{Rg}{R} + 1$$

da cui si ricava:

$$R1 = \left(\frac{Imax}{Imin} - 1 \right) R$$

Dalla relazione precedente si nota che l'ampiezza di regolazione della corrente I fra Imax e I min dipende dal rapporto fra Rg su R.

Per alti valori di tale rapporto (3,5,7,9) si ottengono, a parità di variazioni di ∂, variazioni della corrente I molto sensibili, per piccoli valori di tale rapporto (inferiori a 1), si ottiene una variazione di corrente più lineare e molto meno accentuata.


Costruito il circuito di prova, partendo con il cursore C dalla posizione A fino ad arrivare alla posizione B si eseguono undici letture e si riportano i valori di corrente I letti sull'amperometro per ogni valore di r nella tabella seguente:

n	r/Rg	r	Amperometro div K I			I/Imax	oss.
1	0						
2 3	0,1						
3	0,2						Rg=
4	0,3						
5	0,4						R=
6	0,5						D /D
4 5 6 7 8	0,6						Rg/R=
ð	0,7						
9	0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9						Imax=
10 11	1.0						
11	1,0						

Si traccia quindi il diagramma

I / Imax =
$$f(\partial)$$

$$\partial = \mathbf{r} / \mathbf{R} \mathbf{g}$$

Le curve inferiori forniscono una regolazione grossolana, mentre le curve superiori danno una regolazione fine.

Si conclude che per rapporti Rg/R molto elevati, cioè per ampie regolazioni, risulta più difficoltoso portare la corrente I (specialmente se prossima a Imax, cioè quando il reostato é quasi completamente disinserito) al valore desiderato, perché un piccolo spostamento del cursore (cioè una piccola variazione di ∂ =r/Rg) provoca una notevole variazione della corrente.

Si può ovviare a questo inconveniente inserendo due reostati di regolazione in serie: uno con resistenza totale Rg di valore notevole rispetto alla resistenza di carico R per la regolazione grossolana, l'altro con resistenza totale Rg' di basso valore rispetto ad R per la regolazione fine.

In questo caso si procede prima alla regolazione grossolana e poi alla regolazione fine: operando sul cursore del reostato Rg si porta la corrente ad un valore abbastanza prossimo a quello voluto, operando sul cursore del reostato Rg' si regola definitivamente la corrente al valore desiderato.